www.dermatologiepropraxi.cz 34 PŘEHLEDOVÉ ČLÁNKY Mechanismy rezistence na imunoterapii melanomu DERMATOLOGIE PRO PRAXI 23. Ni K, O’Neill H. The role of dendritic cells in T cell activation. Immunol Cell Biol. 1997;75(3):223-230. doi:10.1038/icb.1997.35. 24. Wu W, Wang W, Wang Y, et al. IL-37b suppresses T cell priming by modulating dendritic cell maturation and cytokine production via dampening ERK/NF-κB/S6K signalings. Acta Biochim Biophys Sin (Shanghai). 2015;47(8):597-603. doi:10.1093/abbs/gmv058. 25. Lindenberg JJ, van de Ven R, Lougheed SM, et al. Functional characterization of a STAT3-dependent dendritic cell-derived CD14 + cell population arising upon IL-10-driven maturation. Oncoimmunology. 2013;2(4):e23837. doi:10.4161/onci.23837. 26. Emeagi PU, Maenhout S, Dang N, et al. Downregulation of Stat3 in melanoma: Reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Ther. 2013;20(11):1085-1092. doi:10.1038/gt.2013.35. 27. Hong M, Puaux AL, Huang C, et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 2011;71(22):6997-7009. doi:10.1158/0008-5472.CAN-11-1466. 28. Harlin H, Meng Y, Peterson AC, et al. Chemokine expression in melanoma metastases associated with CD8 + T-CeII recruitment. Cancer Res. 2009;69(7):3077-3085. doi:10.1158/0008-5472.CAN-08-2281. 29. Yue C, Shen S, Deng J, et al. STAT3 in CD8+ T cells inhibits their tumor accumulation by downregulating CXCR3/ CXCL10 axis. Cancer Immunol Res. 2015;3(8):864-870. doi:10.1158/2326-6066.CIR-15-0014. 30. Kučera J, Strnadová K, Dvořánková B, et al. Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study. Oncol Rep. 2019;42(5):1793-1804. doi:10.3892/ or.2019.7319. 31. Bouzin C, Brouet A, De Vriese J, et al O. Effects of Vascular Endothelial Growth Factor on the Lymphocyte-Endothelium Interactions: Identification of Caveolin-1 and Nitric Oxide as Control Points of Endothelial Cell Anergy. J Immunol. 2007;178(3):1505-1511. doi:10.4049/jimmunol.178.3.1505. 32. Huang H, Langenkamp E, Georganaki M, et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J. 2015;29(1):227-238. doi:10.1096/fj.14-250985. 33. Chen PL, Roh W, Reuben A, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune check-point blockade. Cancer Discov. 2016;6(8):827-837. doi:10.1158/2159-8290.CD-15-1545. 34. Ott PA, Stephen Hodi F, Buchbinder EI. Inhibition of immune check-points and vascular endothelial growth factor as combination therapy for metastatic melanoma: An overview of rationale, preclinical evidence, and initial clinical data. Front Oncol. 2015;5(SEP). doi:10.3389/fonc.2015.00202. 35. Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16(2):121-126. doi:10.1038/nrc.2016.2. 36. Restifo NP, Marincola FM, Kawakami Y, et al. Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100-108. doi:10.1093/jnci/88.2.100. 37. Del Campo AB, Kyte JA, Carretero J, et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer. 2014;134(1):102-113. doi:10.1002/ijc.28338. 38. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819-829. doi:10.1056/NEJMoa1604958. 39. Jin W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial–Mesenchymal Transition. Cells. 2020;9(1):217. doi:10.3390/cells9010217. 40. Karachaliou N, Gonzalez-Cao M, Crespo G, et al. Interferon gamma, an important marker of response to immune check-point blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol. 2018;10. doi:10.1177/1758834017749748. 41. Kim TK, Herbst RS, Chen L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends Immunol. 2018;39(8):624-631. doi:10.1016/j.it.2018.05.001. 42. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune check-points. Nat Commun. 2016;7. doi:10.1038/ncomms10501. 43. Taube JM, Young GD, McMiller TL, et al. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: Implications for PD-1 pathway blockade. Clin Cancer Res. 2015;21(17):3969-3976. doi:10.1158/10780432.CCR-15-0244. 44. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (80- ). 2015;350(6264):1079-1084. doi:10.1126/science.aad1329. 45. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD- -L1 efficacy. Science. 2015;350(6264):1084-1089. doi:10.1126/ science.aac4255. 46. Shaikh FY, Gills JJ, Sears CL. Impact of the microbiome on check-point inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine. 2019;48:642647. doi:10.1016/j.ebiom.2019.08.076. 47. McQuade JL, Ologun GO, Arora R, Wargo JA. Gut Microbiome Modulation Via Fecal Microbiota Transplant to Augment Immunotherapy in Patients with Melanoma or Other Cancers. Curr Oncol Rep. 2020;22(7). doi:10.1007/s11912020-00913-y. 48. Yang M, Wang Y, Yuan M, et al. Antibiotic administration shortly before or after immunotherapy initiation is correlated with poor prognosis in solid cancer patients: An up-to-date systematic review and meta-analysis. Int Immunopharmacol. 2020;88. doi:10.1016/j.intimp.2020.106876. 49. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science (80- ). 2018;359(6371):97-103. doi:10.1126/science.aan4236. 50. Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368-1379. doi:10.1093/annonc/mdx108. 51. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science (80- ). 2018;359(6371):104-108. doi:10.1126/science.aao3290. 52. Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600-605. doi:10.1038/s41586-019-0878-z. 53. Hegazy AN, West NR, Stubbington MJT, et al. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology. 2017;153(5):1320-1337.e16. doi:10.1053/j.gastro.2017.07.047. 54. Frankel AE, Coughlin LA, Kim J, et al. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Check-point Therapy Efficacy in Melanoma Patients. Neoplasia (United States). 2017;19(10):848-855. doi:10.1016/j.neo.2017.08.004. 55. Payandeh Z, Yarahmadi M, Nariman-Saleh-Fam Z, et al. Immune therapy of melanoma: Overview of therapeutic vaccines. J Cell Physiol. 2019;234(9):14612-14621. 56. Van Hoecke L, Verbeke R, Dewitte H, et al. mRNA in cancer immunotherapy: beyond a source of antigen. Mol Cancer. 2021;20(1):48. 57. Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261279. doi: 10.1038/nrd.2017.243. Epub 2018 Jan 12. 58. Gjerstorff MF, Kock K, Nielsen O, et al. MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development. Hum Reprod. 2007;22(4):953-960. doi: 10.1093/humrep/del494. Epub 2007 Jan 5. PMID: 17208940. 59. Niemi JVL, Sokolov AV, Schiöth HB. Neoantigen Vaccines; Clinical Trials, Classes, Indications, Adjuvants and Combinatorial Treatments. Cancers (Basel). 2022;14(20):5163. 60. Niemi JVL, Sokolov AV, Schiöth HB. Neoantigen Vaccines; Clinical Trials, Classes, Indications, Adjuvants and Combinatorial Treatments. Cancers (Basel). 2022;14(20):5163. 61. Kyte JA, Mu L, Aamdal S, et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther. 2006;13(10):905-918. doi: 10.1038/sj.cgt.7700961. Epub 2006 May 5. PMID: 16710345. 62. Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother. 2009;32(5):498-507. 63. Ping H, Yu W, Gong X, et al. Analysis of melanoma tumor antigens and immune subtypes for the development of mRNA vaccine. Invest New Drugs. 2022;40(6):1173-1184. doi: 10.1007/s10637-022-01290-y. Epub 2022 Aug 13. Erratum in: Invest New Drugs. 2022 Aug 27. 64. Weber JS, Carlino MS, Khattak A, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet. 2024 Jan 18:S0140-6736(23)02268-7. 65. Bafaloukos D, Gazouli I, Koutserimpas C, et al. Evolution and Progress of mRNA Vaccines in the Treatment of Melanoma: Future Prospects. Vaccines (Basel). 2023;11(3):636. 66. Ralli M, Botticelli A, Visconti IC, et al. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res. 2020;2020. doi:10.1155/2020/9235638. 67. Kitano S, Nakayama T, Yamashita M. Biomarkers for Immune Check-point Inhibitors in Melanoma. Front Oncol. 2018;8(July):1-8. doi:10.3389/fonc.2018.00270.
RkJQdWJsaXNoZXIy NDA4Mjc=